• 회원가입
  • |
  • 로그인
  • |
  • 장바구니
  • News
    뉴스 신제품 신간 Culture & Life
  • 강좌/특집
    특집 강좌 자료창고 갤러리
  • 리뷰
    리뷰
  • 매거진
    목차 및 부록보기 잡지 세션별 성격 뉴스레터 정기구독안내 정기구독하기 단행본 및 기타 구입
  • 행사/이벤트
    행사 전체보기 캐드앤그래픽스 행사
  • CNG TV
    방송리스트 방송 다시보기 공지사항
  • 커뮤니티
    업체홍보 공지사항 설문조사 자유게시판 Q&A게시판 구인구직/학원소식
  • 디렉토리
    디렉토리 전체보기 소프트웨어 공급업체 하드웨어 공급업체 기계관련 서비스 건축관련 업체 및 서비스 교육기관/학원 관련DB 추천 사이트
  • 회사소개
    회사소개 회사연혁 출판사업부 광고안내 제휴 및 협력제안 회사조직 및 연락처 오시는길
  • 고객지원센터
    고객지원 Q&A 이메일 문의 기사제보 및 기고 개인정보 취급방침 기타 결제 업체등록결제
  • 쇼핑몰
통합검색 " 적층제조센터"에 대한 통합 검색 내용이 3개 있습니다
원하시는 검색 결과가 잘 나타나지 않을 때는 홈페이지의 해당 게시판 하단의 검색을 이용하시거나 구글 사이트 맞춤 검색 을 이용해 보시기 바랍니다.
CNG TV 방송 내용은 검색 속도 관계로 캐드앤그래픽스 전체 검색에서는 지원되지 않으므로 해당 게시판에서 직접 검색하시기 바랍니다
L-PBF 방식 적층공정 해석 보상 모델로 열 변형 해결하기
앤시스 워크벤치를 활용한 해석 성공 사례   금속 적층제조 공정은 금속 파우더를 용융시켜 적층하는 방식으로, 공정 특성상 열 변형이 동반된다. 이러한 열 변형은 출력 결과물의 구조적 신뢰성에 큰 영향을 미치므로, 제품의 치수 정밀도를 높이기 위해 반드시 해결해야 한다. 열 변형 해결을 위한 대표적인 방법은 앤시스 애디티브(Ansys Additive)를 이용하여 보상 모델을 활용하는 것이다. 보상 모델은 설계 모델과 실제 생산된 제품 간의 치수 차이를 해결하기 위한 방법이다. 적층공정 중 발생하는 제품 변형을 예측하여 이에 대한 보상 모델을 생성하면, 보상 모델이 사전 예측된 변형 거동을 따라 변형됨으로써 원하는 치수 정밀도를 충족하게 해준다. 이번 호에서는 워크벤치 애디티브(Workbench Additive)를 활용하여 L-PBF 방식의 보상 모델 생성 방법에 초점을 맞추어 다뤄보고자 한다.   ■ 김선명 | 태성에스엔이 적층제조센터 DfAM팀의 매니저로, 적층제조 특화 설계를 담당하고 있다. 이메일 | smkim23@tsne.co.kr 홈페이지 | www.tsne.co.kr   적층 공정에서의 보상 모델 적층제조 공정에서 발생하는 제품의 열 변형은 설계 치수와 실제 제품 간에 치수 차이를 발생시키는 원인이다. 치수에 오차가 발생함에 따라 구조 및 성능에 대한 문제가 발생할 뿐 아니라, 후가공에서도 문제가 발생할 수 있다. 따라서 적층제조 공정에서 치수 정밀도와 성능을 유지하기 위해 열 변형을 고려한 제품 설계가 필요하다. L-PBF 적층제조 공정에서 열 변형이 발생하는 원인은 고출력 레이저를 사용하여 금속 분말을 용융시키기 때문이다. 이렇게 제작되는 부품은 제조공정 중에 고온의 에너지를 지속적으로 받게 되고, 제조공정이 끝나도 열응력이 남아있는 등 열 변형에 대한 문제점이 존재한다. <그림 1>은 제조공정 중 발생하는 열이 충분히 배출되지 못해 발생한 열 변형의 대표적인 예이다.   그림 1. 원본 지오메트리 : (a) 설계 모델, (b) 시뮬레이션 결과, (c) 제작 모델   이러한 열 변형에 의한 수축/팽창으로 유발되는 제품 변형을 방지하기 위해 보상 모델의 적용이 필요한 것이다. 그러나 열 변형 거동을 고려한 보상 모델 설계를 직접 수행하기에는 어려움이 있으므로 시뮬레이션을 사용하여 보상 모델을 생성한다. 앞서 언급한 보상 모델이란, 적층제조 공정 중 발생하는 제품 변형을 사전 시뮬레이션을 통해 예측한 후, 열 변형 발생 시 원본 설계와 동일한 형상이 도출되게끔 모델링을 변경하는 방법이다. 먼저 <그림 2>와 같이 열 변형으로 인한 팽창이 일어날 것으로 예측되는 영역에 대해 형상을 변경시킴으로써 보상 모델이 생성된다. 이 보상 모델에 대한 적층공정 시뮬레이션을 수행한 결과, 동일 구간에서 열 변형으로 인한 팽창이 발생하며 원래 설계대로 제품 형상이 완성됨을 확인할 수 있다.   그림 2. 보상(compensated) 지오메트리 : (a) 설계 모델, (b) 시뮬레이션 결과, (c) 제작 모델   L-PBF 공정 시뮬레이션의 보상 모델 생성 방법 이 글에서는 <그림 3>과 같은 형상의 Ti-6Al-4V 재질의 더블 아치형 모델을 이용하여 L-PBF 적층공정 시뮬레이션을 진행하고 보상 모델을 생성하고자 하며, 과정은 다음과 같다. 먼저 보상 모델 생성에 앞서 첫 번째로 모델의 L-PBF 시뮬레이션을 수행한다. 다음으로 Inherent Strain 해석을 기반으로 L-PBF 시뮬레이션 진행 후 결과를 검토하며 보상 모델의 생성 기준을 정의하고, Distortion Compensation 기능을 활용하여 보상 모델 생성을 위해 <그림 4>에서 나타낸 순서대로 워크플로를 진행하여야 한다. 마지막으로 생성된 보상 모델의 L-PBF 시뮬레이션 결과를 검토하여 실제 출력물의 결과가 어떻게 나올지 분석하여야 한다.   그림 3. L-PBF 시뮬레이션을 위한 모델   그림 4. 보상 모델 생성의 워크플로   ■ 기사의 상세 내용은 PDF로 제공됩니다.
작성일 : 2023-08-02
3D 프린팅의 배치 최적화 및 서포트 설계 방법
AM 스튜디오를 활용한 금속 3D 프린팅   이번 호에서는 새롭게 등장한 PBF 머신을 지원하는 데이터 전처리 소프트웨어인 AM 스튜디오(AM-Studio)의 특징과 워크플로에 대하여 살펴보고자 한다. ■ 유병주  태성에스엔이 적층제조센터(DfAM)의 소장이다. 구조해석 분야의 오랜 경험과 통찰력을 바탕으로 금속적층제조 분야의 설계, 해석 및 3D 프린팅 소재, 제품에 대한 연구를 총괄하며 다양한 국책지원사업에 참여하고 있다. 이메일 | bjyoo@tsne.co.kr 홈페이지 | www.tsne.co.kr ■ 황우진 태성에스엔이 적층제조센터(DfAM)의 전문가로서 설계부터 제작까지 수반되는 Additive Solutions 전문 해석을 담당하고 있다. AM 교육 담당과 함께 DfAM 및 제조 성공 사례를 발굴하며 DfAM의 표준을 제시하고 있다. 이메일 | hwj3237@tsne.co.kr 홈페이지 | www.tsne.co.kr   금속 PBF 기술과 전처리기의 등장 금속 적층제조(Additive Manufacturing)에 관심이 있는 분들이라면 한번쯤은 EOS의 DMLS, GE 애디티브(GE Additive)의 LaserCUSING, SLM 솔루션즈(SLM Solutions)의 SLM 그리고 3D시스템즈의 DMP를 들어보았을 것이다. 세계적으로 유명한 금속 적층제조 장비 제작사와 각 제작사가 보유한 적층제조 기술을 의미한다. 이러한 기술을 하나로 묶어서 ASTM F2792에서는 PBF(Powder Bed Fusion) 방식으로 명명하고 있다.  PBF로 명명되는 금속분말 적층제조 방법의 뿌리는 1995년으로 거슬러 올라간다. 이 때 지금까지 유명한 2개의 이름이 세상에 드러나게 되었다. 첫 번째는 EOSINT M250이라는 세계 최초의 금속 적층제조 머신이다. 이 장비는 독일 EOS의 DMLS(Direct metal Laser Sintering) 기술을 이용하여 PBF 장비를 최초로 시장에 출시한 것이다. 한편 독일 프라운호퍼 레이저 기술 연구소(Fraunhofer ILT)에서 3명의 연구원이 SLM(Selective Laser Melting)이라는 기술로 특허를 출원하였다. 1년 뒤 ILT SLM 프로세스에 대한 기본 특허를 받았으며, 이후 이 연구를 진행한 공동발명가들이 창업 또는 스핀오프를 하면서 우리가 알고 있는 여러 PBF 전문 회사들이 생겨나게 되었다. 이러한 이유에서 SLM이라는 특허 기술은 회사의 이름뿐만 아니라 PBF를 표현하는 다른 이름으로 널리 사용되고 있다. PBF 머신의 발전과 함께 소프트웨어(여기서는 데이터 전처리기, data pre-processor)도 빠르게 개발되었다. 대표적인 전처리기는 머티리얼라이즈(Materialise)의 매직스(Magics)이다. 머티리얼라이즈는 시장의 흐름과 고객의 요구에 맞추어 꾸준히 제품을 개발하였다. 현재까지 여러 특색 있는 PBF 머신 개발회사가 생겨난 것에 비해, 데이터 전처리는 머티리얼라이즈의 매직스가 독점적 위치를 차지하고 있다.  2010년대 후반에 이르러 유럽에서는 전처리기 시장에서 새로운 움직임이 일어났다. 이 중 하나는 CADS의 AM 스튜디오(AM-Studio)의 등장이다. 이 전처리기의 개발 역사는 PBF 장비의 예처럼 흥미롭다. 2016년에 독일 SLM 솔루션즈와 CADS간의 합작투자회사인 ‘SLM 솔루션즈 소프트웨어(SLM Solutions Software)’가 설립되었다. 이 합작회사는 2018년에 데이터 전처리 소프트웨어인 Additive Designer(애디티브 디자이너)를 출시하였다. 2019년 CADS가 SLM 솔루션즈 소프트웨어의 전체 지분을 인수하면서 합작은 종료되었으며, CADS의 100% 자회사인 ‘CADS 애디티브(CADS Additive)’로 이름을 변경하게 된다. 인수 후 1년 뒤인 2020년에 CADS 애디티브는 스탠드얼론(stand-alone) 프로그램인 AM 스튜디오를 출시하였다. CADS에 따르면 AM 스튜디오는 EOS, SLM 솔루션즈, 트럼프(Trumpf), 디엠지 모리(DMG Mori) 머신과 완벽한 호환을 이룬다고 한다. 이로써 PBF 장비를 운영하고 있거나 앞으로 고려 중인 고객에게는 데이터 전처리기에 대한 선택권이 하나 더 추가되었다.   AM 스튜디오의 특징과 기능 금속 3D 프린팅에 있어서 제작을 위한 최적의 배치와 서포트 설계는 매우 중요한 단계로서, 설계한 제품이 금속 3D 프린팅을 통해 정상적인 완성품이 되어 나오는 데에 중요한 역할을 한다. 이제부터 AM 스튜디오를 활용하여 금속 3D 프린팅 배치 최적화 및 서포트 설계 방법을 소개하고자 한다. 먼저 AM 스튜디오는 사용자가 배치 및 서포트 설계부터 네스팅(nesting), 빌드 전략(build strategy) 설정 및 슬라이싱 뷰어까지 전 과정을 쉽게 접근하고 다룰 수 있는 프로그레스 바(Progress Bar) GUI로 이루어져 있으며, 프로그레스 바의 순서대로 작업을 진행하는 워크플로를 가지고 있다.(그림 1)   그림 1. AM 스튜디오의 워크플로  
작성일 : 2022-05-02
EOS, 초고속 직접 금속 레이저 소결 시스템 EOS M 400-4 공개
하이엔드급 적층 제조(AM) 솔루션 기업인 EOS가 혁신적인 직접 금속 레이저 소결 방식(DMLS) 시스템을 공개했다.  'EOS M 400-4' 시스템은 산업용으로 설계된 초고속 4개 멀티 레이저 시스템으로, 다양하고 복합적인 고객 요구 사항을 만족시키기 위해 기존 EOS 기술로 개발된 EOS DMLS 제품군의 영역을 확장하였다. 이를 통해 새로운 차원의 생산성, 품질 향상 및 적용 산업 분야 확장성의 발판을 마련하였다.  지멘스 발전 서비스(Siemens Power Generation Services)의 핀스팡 적층제조센터 관할(Finspang Additive Manufacturing Centre of Competence) 그룹 매니저인 안드레아스 그라이헨(Andreas Graichen)은 “우리는 기존의 소규모 단일 레이저 유닛을 사용한 AM 작업에서 더 규모가 크고 여러 레이저 유닛을 사용하는 한 차원 높은 AM 작업으로 환경을 발전시키기 위해 EOS M400-4 시스템을 선택했다. EOS M400-4 시스템은 향상된 생산성을 제공하고 더욱 커진 제작 플랫폼과 새로운 처리 솔루션을 활용하여 새로운 가스 터빈 설계 아이디어를 산업 제조 현장에서 실현할 수 있도록 해 준다. 또한 우리는 EOS의 새로운 시스템을 통해 빠르게 변모하는 에너지 산업의 디지털 환경에서 발전의 가속도와 효율성을 얻을 수 있다. 이를 통해 지멘스는 고효율 전력 발전 기술 분야에서 독보적인 위치를 선점할 수 있을 것”이라고 덧붙였다. EOS의 최고마케팅경영자(CMO)인 아드리안 케플러(Adrian Keppler) 박사는 “EOS는 모든 산업 분야의 생산 환경에 적층 제조 기술을 도입하겠다는 전략에 따라 이 혁신적인 DMLS 시스템을 개발했다. EOS M 400-4 시스템은 EOS의 산업용 시스템 포트폴리오를 완벽하게 강화하는 구성 요소로, 효율성, 어플리케이션 확장, 사용 편의성 및 프로세스 모니터링 등 EOS 산업 파트너가 가장 많이 요구하는 사항을 만족하여 기존 제조 장벽을 허무는 쾌거를 달성했다. 이 시스템은 산업용 3D 프린팅을 위해 설계된 모듈식 플랫폼을 제공하며 기존 생산 환경 및 향후 고객의 제조 공정 혁신 방향과 손쉽게 통합이 가능하다”고 밝혔다. EOS M 400-4는 고성능 DMLS 시스템 가능성의 범위를 확장한다. EOS M 400-4는 400x400x400mm의 제작 공간을 제공하며 각각 250x250mm 범위(중첩 범위 각 50mm)의 400W 레이저 4개가 장착되어 있다.  뛰어난 빔 품질 및 출력 안정성을 통해 최고의 DMLS 부품 품질을 보장하며 안정적 설계가 검증된 EOS M 290 기술 프로세스에 기반하여 작동된다. 최대 4배 증가한 생산성과 4배 빠른 속도로 한 차원 높은 생산 혁신을 이룩했으며, 금속 적층 제조 분야의 토탈 산업 솔루션을 제공할 것이다. EOS M 400-4 시스템의 일환인 새 EOS ClearFlow 가스 관리 기술은 일정한 안정성과 최적의 처리 조건을 보장한다. 이 시스템은 용융(melting) 프로세스 중 발생되는 부산물이 레이저에 미치는 간섭을 최소화하도록 지능적인 방법으로 챔버 내 가스를 이송 처리한다. 또한 통합된 산업 등급의 재순환 필터 시스템은 필터 수명이 길어 운영 시간 및 비용을 크게 절감할 수 있다.  EOS M 400-4의 사용 편의성과 작업 공정은 산업 요구 수준을 만족하고 기존 생산 환경에 손쉽게 통합되도록 설계되었다. 이 직관적인 소프트웨어는 유연하고 효율적인 작업 공정을 제공하며 터치 스크린과 작업 기반 그래픽 사용자 인터페이스를 통해 시스템을 손쉽게 조작하도록 해 준다. 확장적인 EOSTATE Monitoring Suite는 파우더 베드, 여러 파라미터 및 레이저 출력을 모니터링하여 산업 생산 요구 수준을 충족한다. 시스템 제작 작업과 별도로 데이터 준비 및 작업 계산이 이루어지며 이는 네트워크를 통해 전송되어 작업 유연성과 효율성을 극대화한다. 현재 EOS M 400-4에는 EOS NickelAlloy HX 및 EOS MaragingSteel MS1 재료를 사용할 수 있으며 향후 더 많은 재료가 추가될 예정이다. 소재별 파라미터는 EOS ParameterEditor를 통해 조정 가능하며 각 애플리케이션별 요구 사항을 만족시킬 수 있다.
작성일 : 2017-01-05